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In the vehicle design process, design decisions are more and more based on virtual

prototypes. Due to competitive and regulatory pressure, vehicle manufacturers are

forced to improve product quality, to reduce time-to-market and to launch an

increasing number of design variants on the global market. To speed up the design

commonly used, involving the analysis of substructure models and the synthesis of the

substructure analysis results. Substructuring and CMS enable efficient decentralized

collaboration across departments and allow to benefit from the availability of parallel

computing environments. However, traditional CMS methods become prohibitively

inefficient when substructures are coupled along large interfaces, i.e. with a large

number of degrees of freedom (DOFs) at the interface between substructures.

The reason is that the analysis of substructures involves the calculation of a number

of enrichment vectors, one for each interface degree of freedom (DOF). Since large

interfaces are common in vehicles (e.g. the continuous line connections to connect the

body with the windshield, roof or floor), this interface bottleneck poses a clear

limitation in the vehicle noise, vibration and harshness (NVH) design process. Therefore

there is a need to describe the interface dynamics more efficiently. This paper presents a

wave-based substructuring (WBS) approach, which allows reducing the interface

representation between substructures in an assembly by expressing the interface DOFs

in terms of a limited set of basis functions (‘‘waves’’). As the number of basis functions

can be much lower than the number of interface DOFs, this greatly facilitates the

substructure analysis procedure and results in faster design predictions. The waves are

calculated once from a full nominal assembly analysis, but these nominal waves can be

re-used for the assembly of modified components. The WBS approach thus enables

efficient structural modification predictions of the global modes, so that efficient vibro-

acoustic design modification, optimization and robust design become possible. The

results show that wave-based substructuring offers a clear benefit for vehicle design

modifications, by improving both the speed of component reduction processes and the

efficiency and accuracy of design iteration predictions, as compared to conventional

substructuring approaches.
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1. Introduction

Driving factors in modern automotive product development include the steadily increasing customer demands and
competitive nature of the market. Automotive design engineers face the challenging and complex problem of meeting ever
expanding but often conflicting design criteria and legislations. As time-to-market and development costs must be
reduced, physical prototype phases must be shortened, and product decisions must be taken earlier in the design process
[1,2]. The additional trend of mass customization forces engineers to design a higher number of variants on a lower
number of platforms. To overcome this increasing demand of computer calculation resources, fast assembly predictions
become ever more important in the vehicle development process and the design decisions are more and more based on
virtual prototypes.

1.1. Different approaches to component mode synthesis

The finite element (FE) method [3,4] has become the most popular deterministic technique to predict the vibro-acoustic
performance of mechanical structures. In automotive industry, the method is extensively used for modal analysis and
interior acoustics prediction of vehicles [5–7]. With increasing frequency, the model size (and hence the computational
costs) must increase to maintain the prediction accuracy. This limits the applicability of the FE method to the low and
medium frequency range, even with today’s powerful computers [8,9].

To partially overcome this practical limit, extensive work has been performed on substructuring and component mode
synthesis (CMS) techniques [10]. By dividing the structure into smaller parts, solving the substructures individually and
then recombining the substructure results into a system-level solution, more efficient calculation schemes can be achieved.
The degrees of freedom (DOFs) of each substructure are expressed in terms of a limited number of component modes; the
component models are then synthesized. A range of CMS methods has been reported in the literature, as overviewed in e.g.
[11–14]. All methods make use of the vibration normal modes of the substructures but they differ in the boundary
conditions that are applied to the substructures and in the selection of enrichment vectors to these normal modes. Two
well-established CMS methods are:
(1)
 The Craig–Bampton fixed interface approach [10,15], for which the normal modes are computed while the
substructure is clamped at the connection interface, and for which the enrichment vectors consist of constraint
modes (which are the static deformation shapes of the substructure obtained by successively applying a unit
displacement on one interface degree of freedom, while holding the remaining interface DOFs fixed, and repeating this
for all interface DOFs).
(2)
 The approach of MacNeal [16] and Rubin [17] uses the normal modes of the component in free–free conditions, and
enrichment vectors that consist of residual flexibility modes (which are the static deformation shapes obtained by
successively applying a unit force on one of the interface degrees of freedom, with a zero force on the remaining
interface DOFs, and repeating this for all interface DOFs).
1.2. Reduction of the interface representation size

The well-established CMS methods reported in the previous section perform a reduction procedure, in which, in a first
phase of the calculation, the component normal modes are calculated (with method-dependent boundary conditions). In a
second phase, an additional static vector is then calculated for each interface DOF (namely a constraint mode for Craig–
Bampton, and a residual attachment mode for MacNeal and Rubin, respectively). This second calculation step implies that
the efficiency of the procedure decreases when the number of interface DOFs increases. In case of a small interface,
the extra effort involved in calculating the additional static vectors is rather small. However, for a large interface, this
calculation may become prohibitively expensive in terms of CPU time.

To further speed up the synthesis, the interface representation size between components must be reduced. Previous
papers have reported on the use of component modes to derive the interface basis functions [18]. Ji et al. [19] have
developed a procedure to use component modes to derive interface basis functions that efficiently describe the interface
between two substructures. They consider this in a forced response context, with a source substructure and receiver
substructure. The source and receiver substructures are described with uncoupled modes. The presented applications are
limited to plates and beams, for which the component modes are obtained as an infinite series of orthogonal basis
functions that are truncated at a certain number. The interface forces and displacements are decomposed into a set of
complete and orthogonal basis functions, and the equilibrium and continuity conditions are subsequently enforced in
terms of basis functions. This way, the physical coupling DOFs of the built-up structure are transferred into generalized
coupling DOFs. This can potentially give accurate, approximate models using a reduced number of DOFs, however, only in
the case that the global interface displacements can indeed be described accurately in terms of component modes. In the
extreme case of coupling a very stiff component with a very flexible component, an obvious choice is to derive the interface
basis functions from the component modes of the stiff component. This is indeed the application reported in [19], in which
a stiff beam is coupled to a flexible plate in a forced response context. The beam acts as the long-wavelength source,
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coupled to the short-wavelength plate. It is shown that a limited number of mode shapes of the stiff beam can be used to
accurately describe the interface dynamics. This approach is indeed promising for such extreme cases, and has industrial
value (e.g. to study the response of a flexible floor structure to the source input from a stiff piece of machinery), but it is not
generally applicable. The approach is not suitable to describe the interface of components with similar modal densities
(for which the global system dynamics differs substantially from the component dynamics).

Brahmi et al. [20] use the terminology of ‘‘junction DOFs’’ as a synonym for ‘‘interface DOFs’’; in this paper, both these
terms will be used as synonyms. Brahmi et al. present a method to reduce the number of junction DOFs in a component
mode synthesis method, based on the use of interface modes. These are obtained from solving the Guyan eigenvalue
problem. The junction DOFs are then expressed in terms of these interface modes. A similar approach is used by Tran [11],
who first calculates the constraint modes for the global structure, and projects the global stiffness matrix and mass matrix
of the structure on the global constraint modes to obtain the reduced stiffness matrix and the reduced mass matrix.
A Guyan eigenvalue problem can then be defined and the solution yields a set of interface modes which can be used as
enrichment vectors in CMS, instead of the (much) larger set of constraint modes.

Castanier et al. [21] describe a technique for reducing the size of a model generated by a Craig–Bampton method. The
method is based on performing an eigenanalysis on the constraint-mode partitions of the mass and stiffness matrices that
correspond to the Craig–Bampton constraint modes. This way, the characteristic constraint modes are obtained. These are
the characteristic deformation shapes of the interface, which may be truncated in the same way as natural modes of
vibration. The method of Castanier et al. does require the calculation of a full Craig–Bampton model, for which the interface
description can then be strongly reduced when the characteristic constraint modes are used instead of the constraint
modes. The authors mention that the characteristic constraint modes give insight in the physical mechanisms of vibration
transmission between substructures. This makes the method especially suited for power flow prediction in complex
substructures. The CCM method shares the computational disadvantage of the Craig–Bampton method when a large
number of interface DOFs are involved, which is the case amongst others for line and surface connections between
components in complex mechanical systems. The presented WBS method alleviates the computational cost for calculating
all enrichment vectors, by proposing a way to directly calculate the enrichment vectors of interest, without first having to
calculate the entire set, and making a subsequent condensation thereof.

Work has also been performed on different ways to increase the accuracy when studying design modifications [22].

1.3. Wave based substructuring: outline of the paper

In the former, it has been elaborated that reducing the interface description is of great value in CMS to speed up the
calculations. Several methods to reduce the interface description have been reported up to now, exploiting either static
reduction or component modes to reduce the interface description. Reported methods are, however, limited in terms of
accuracy or applicability. That is, an approach that allows reduction of the interface in the entire dynamic frequency range
of interest, which takes the dynamics of the assembly model into account, and which is valid also for the assembly of
substructures with similar modal density, has not yet been reported. The wave-based substructuring (WBS) approach, for
which preliminary results have been reported in [23,24], is presented in this paper as a method that is in line with these
requirements. Section 2 gives a detailed overview of the WBS approach. In WBS, a single modal analysis computation of the
full assembly model is performed in order to obtain the interface basis functions. The interface displacements of
substructures are then described by a limited set of interface basis functions (‘‘waves’’). As the required number of basis
functions is typically much lower than the number of interface DOFs, faster assembly predictions are obtained as compared
to the CMS method of MacNeal [16] and Rubin [17]. Since the waves are calculated from the full assembly model, the
interface dynamics are accurately captured, even when coupling components with similar modal density. The waves
obtained from a full nominal assembly analysis can be re-used for the assembly of modified components. With modification
analysis and optimization in mind, and also for robust design and uncertainty assessment [13,14], a single full computation
is not a large burden, as an optimization may consist of numerous iterations involving hundreds of FE runs. The single full
run in WBS enables that the interface representation size is reduced, which facilitates the model reduction procedure of
components and speeds up the assembly analysis, while the accuracy is maintained. In Section 3, the efficiency and accuracy
of WBS (as compared to the conventional MacNeal–Rubin substructuring procedure) are demonstrated on the basis of two
application cases, namely a two-plate assembly case and an industrial vehicle BIW case aimed at efficient re-design of the
B-pillars. On the basis of the latter case, Section 4 shows that WBS can be used for efficient design modifications in view of
reaching global vibro-acoustic performance targets. The paper is concluded in Section 5.

2. Theory of wave-based substructuring

2.1. Matrix equations of substructuring

Consider the general undamped structure S to which no external forces are applied. The FE matrix equation for the
assembled system is given by

M €xþKx¼ 0 (1)
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Let this structure be decomposed into Ns non-overlapping substructures. For each substructure (denoted with superscript
ðsÞ, with s¼ 1 . . .Ns), the DOFs are decomposed into interior DOFs (subscript i) and junction DOFs (subscript j) at the
interface. The equation of motion of each substructure can then be written in matrix form as

Mii Mij

Mji Mjj

" #ðsÞ €x i

€xj

( )ðsÞ
þ

Kii Kij

Kji Kjj

" #ðsÞ xi

xj

( )ðsÞ
¼

0

fj

( )ðsÞ
(2)

For an example structure consisting of two substructures (a) and (b), this process is visualized in Fig. 1. The junction

(or boundary) DOFs are denoted xðaÞj and xðbÞj , and the interior DOFs are denoted xðaÞi and xðbÞi , respectively.

To assemble the substructures, equilibrium and continuity conditions must be applied to the reduced matrix equations
of the substructures. This may require rigid or elastic connections.

Rigid connection: A rigid connection between two substructures ðaÞ and ðbÞ can be created by applying continuity of the
interface displacements and the equilibrium of the interface reactions:

xðaÞj ¼ xðbÞj and fðaÞj þfðbÞj ¼ 0 (3)

Elastic connection: In some cases, the nominal model may have an elastic connection along the interface (e.g. in vehicle
assembly, the glue connection between windscreen and body in white (BIW)). The equilibrium and continuity condition in
Eq. (4) can then be applied to create an elastic connection between two substructures ðaÞ and ðbÞ. Here, the matrices Ke

represent the elastic coupling stiffness matrices between the junction DOFs of the substructures. An alternative
formulation can be derived for cases in which more than two substructures are connected along an interface

fðaÞj

fðbÞj

2
4

3
5¼ Ke

aa Ke
ab

Ke
ba Ke

bb

" #
xðaÞj

xðbÞj

2
4

3
5 (4)

when the number of junction DOFs is large, the ‘‘reduction’’ step to solve individual substructures may become a
bottleneck, since the number of junction DOFs determines the speed and memory requirements of the modal reduction
procedure. For the reduction of a substructure in a given frequency range of interest on a given computer system, this
means that it may no longer be feasible to perform the reduction procedure when the interface representation size is larger
than a certain number of junction DOFs. Moreover, when reduced substructure models are assembled, the size of the
assembled system will be dominated by the size of the junction DOFs.

2.2. Matrix equations for wave-based substructuring

2.2.1. A wave-based formulation of the junction DOFs

Consider the substructure ðsÞ, which has nðsÞj junction DOFs xj. To reduce the interface description, a set of nðsÞw basis
functions WðsÞ can be used to express the junction DOFs xðsÞj as a linear combination of WðsÞ:

xðsÞj ¼WðsÞ
� pðsÞ (5)
Fig. 1. Domain decomposition and CMS, visualized for an example structure consisting of two substructures ðaÞ and ðbÞ, with junction (or boundary) DOFs

xðaÞj and xðbÞj , and interior DOFs xðaÞi and xðbÞi , respectively.
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Substitution of Eq. (5) in Eq. (2) yields the following equation for each substructure ðsÞ (where substructure indices ðsÞ are
omitted for convenience):

Mii MijW

WTMji WTMjjW

" #
€x i

€p

( )
þ

Kii KijW

WTKji WTKjjW

" #
xi

p

( )
¼

0

WTf j

( )
(6)

From here on, the basis functions are denoted ‘‘waves’’. Provided that the number of waves nðsÞw is less than the number of
junction DOFs nðsÞj , this substitution reduces the size of the interface representation.

2.2.2. Wave-based assembly definition

To create an assembly of substructures, equilibrium and continuity must be applied to the reduced matrix equations of
the substructures, which now have the form in Eq. (6). Without loss of generality, consider again the visualization example
with two substructures ðaÞ and ðbÞ in Fig. 1. Using Eq. (5) for each substructure, the junction DOFs xðaÞj and xðbÞj are expressed
as a linear combinations of two sets of interface basis functions, by substituting xðaÞj ¼WðaÞ

� pðaÞ and xðbÞj ¼WðbÞ
� pðbÞ,

respectively, as shown in Fig. 2.
A connection between the waves pðaÞ and pðbÞ on each side must now be made. Again, rigid or elastic connections can be

defined, with equilibrium and continuity conditions defined in terms of waves.
Rigid connection: A rigid connection between two substructures ðaÞ and ðbÞ can be made when the same waves are used

at each side of the connection (WðaÞ
¼WðbÞ). Continuity of the wave participation factors at each side, and conventional

equilibrium of interface forces, then results in a rigid connection:

pðaÞ ¼ pðbÞ and fðaÞj þfðbÞj ¼ 0 (7)

Elastic connection: In the elastic equilibrium and continuity condition in Eq. (4), the same substitutions xðaÞj ¼WðaÞ
� pðaÞ

and xðbÞj ¼WðbÞ
� pðbÞ can be made (according to Eq. (5)). After multiplying the first row with WðaÞT and the second row with

WðbÞT, the following elastic equilibrium and continuity condition between waves is obtained:

WðaÞTfðaÞj

WðbÞTfðbÞj

2
4

3
5¼ WðaÞTKe

aaWðaÞ WðaÞTKe
abWðbÞ

WðbÞTKe
baWðaÞ WðbÞTKe

bbWðbÞ

2
4

3
5 pðaÞ

pðbÞ

" #
(8)

2.2.3. Requirements for the waves

This section describes the physical meaning of the ‘‘waves’’, and presents requirements that must be met to be able to
use the waves for wave-based substructuring. The waves can be seen as a special kind of modal displacement shapes that
are defined at the substructure interface.
�

Fig
inte

fact
Regarding the wave matrix size, recall from Section 2.2.1 that for each interface between substructures, the junction
DOFs xðsÞj of substructure ðsÞ are expressed as a linear combination of a set of waves WðsÞ, weighted with wave
participation factors pðsÞ. The dimension of WðsÞ is hence nðsÞj � nðsÞw , with nðsÞj the number of junction DOFs of the
substructure and nðsÞw the number of wave vectors in WðsÞ. The wave matrix WðsÞ hence has the same dimension as the
matrix UðsÞj , which is the partition of a modal displacement matrix UðsÞ with nðsÞw modes, defined at the xðsÞj junction nodes
of substructure ðsÞ.

�
 The waves and the modal displacement shapes (obtained from a modal analysis of the nominal full FE model of the

complete structure) defined at the interface have a similar physical meaning.
3 In WBS, the waves are basis functions that must allow predicting the interface dynamics in a certain frequency

range.
3 The modal displacement shapes at the interface are indeed a limited set of basis functions that one could use to

describe the structural dynamics at the interface.
. 2.
rior

ors.
Wave-based substructuring: example for the structure in Fig. 1, consisting of two substructures ðaÞ and ðbÞ, with junction DOFs xðaÞj and xðbÞj , and

DOFs xðaÞi and xðbÞi , respectively. The junction DOFs are expressed in terms of waves, and the assembly is defined between the wave participation



ARTICLE IN PRESS

S. Donders et al. / Journal of Sound and Vibration 329 (2010) 1062–1080 1067
�
 Orthonormality of the waves is recommended. It is key, for a given number of waves, to span a vector space as wide as
possible. This is achieved with an orthonormal wave set. Furthermore, an orthonormal set is required to obtain a well-
conditioned structural analysis problem after the wave substitution in Eq. (5), and hence to avoid poor quality of
solutions or unstable solutions. In the limit case that a wave set contains duplicate individual waves, the numerical
solver will yield a failure. In case of an elastic WBS connection, orthogonality of the waves is also required in order to
avoid ill-conditioning of the elastic connection matrix defined in Eq. (8). Here it is noted that in a numerical
implementation of an orthonormalization algorithm, perfect mathematical orthogonality of waves is typically not
achieved. This is due to rounding and approximation errors in the lowest significant numbers in the wave definitions. In
a practical wave calculation procedure, one must therefore perform a selection step to keep the most relevant waves
that span the vector space of interest in order to accurately represent the interface deformations, while avoiding (slight)
loss of conditioning. When one keeps waves that are of less importance to spanning the vector space of interest, one
may introduce a limited ill-conditioning because of (minor) dependency effects with the other waves in the wave set.

�
 An additional requirement comes from the fact that the key value of WBS in the vehicle design process is seen in a

modification and optimization context. To enable this, the wave set must be robust to modifications. That is, the set of
waves WðsÞ should not only enable to represent the interface dynamics of a nominal structure, but also the interface
dynamics of a modified structure (e.g. the modification of one substructure, or the modification of elastic connection
stiffness at the interface, in case of elastic WBS connection).

2.3. Procedure for wave-based substructuring

In the previous section, the WBS approach has been presented, and the matrix equations on a substructure level and
assembly level have been introduced. Furthermore, it has been described that the waves can be regarded as a special kind
of modal displacement shapes, defined at the junction DOFs of a substructure. Requirements for the waves have been
described, both regarding the WBS matrix formulation and in view of practical applications. In this section, the WBS
procedure for structural analysis is introduced. An outline of the procedure is shown in Fig. 3.

The wave calculation is described in detail in Section 2.3.1. First, a matrix of modal displacement shapes is obtained
from a full FE analysis of the complete structure in the frequency range of interest. These modal displacement shapes are
then postprocessed to obtain the waves (in order to guarantee orthogonality of individual waves and to perform a selection
of waves). An option in the WBS procedure is to create a reduced modal model for components (i.e. substructures).
The procedure for reduction of components is described in Section 2.3.2. The final step in the WBS procedure in Fig. 3 is the
wave-based assembly definition between components, see Section 2.2.2.

2.3.1. Wave calculation

Consider a general undamped structure S decomposed into Ns substructures, to which no external forces are applied.
For the nominal analysis case of interest, boundary conditions (in vehicle engineering, often free–free conditions) and a
frequency range of interest have been specified. For this nominal structure S, a nominal full FE model is available,
partitioned per substructure.

The aim of the wave calculation is to calculate a matrix WðsÞ of nðsÞw waves for each substructure ðsÞ, so that the nðsÞj

junction DOFs xðsÞj can be written as linear combination of the waves according to Eq. (5). Provided that nðsÞw onðsÞj , this
reduces the size of the interface representation.

The first part of the wave calculation procedure consists of performing a modal analysis of the nominal full FE model of
the complete structure S in the same frequency range as the nominal analysis case, and using the same boundary
Fig. 3. Wave-based substructuring procedure.
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conditions as the nominal model. This yields m eigenmodes U (normal modes, optionally also residual attachment
vectors), so that the displacement vector x can be written in approximate form as

x � x̂ ¼
XNr

m ¼ 1

frqr ¼Uq (9)

where the vector q contains the unknown eigenmode contribution factors qr . This equation can then be partitioned per
substructure, distinguishing interior DOFs xi and junction DOFs xj:

xN�1 ¼UN�mqm�1 ()

xð1Þi

xð1Þj

xð2Þi

xð2Þj

^

xðsÞi

xðsÞj

2
666666666666664

3
777777777777775

¼

Uð1Þi

Uð1Þj

Uð2Þi

Uð2Þj

^

UðsÞi

UðsÞj

2
666666666666664

3
777777777777775

� fqg (10)

The second part of the wave calculation aims at obtaining the wave sets WðsÞ from the modal matrix U. For each
interface, for each substructure ðsÞ, this second part starts from the matrix partition UðsÞj in Eq. (10) that contains the
interface modal displacements obtained from the modal analysis of the nominal full FE model of the complete structure.
Note that the individual vectors of UðsÞj do not (necessarily) meet the orthonormality requirement of the waves as
introduced in Section 2.2.3:
�
 By performing the modal analysis calculation of the full FE model of the complete structure, a matrix of m eigenvectors
U is obtained; these eigenvectors are orthonormal in the subspace of the entire structure. For the individual vectors in
the partition UðsÞj defined at the junction DOFs of one substructure, orthonormality is, however, not guaranteed. For
instance, one can think of two modes that have very different modal displacement shapes in several regions of the
structure (which makes them independent), but which have the same modal displacement shape at the particular
interface of interest. In such case, the partitions of those two modes at the interface are linearly dependent.

�
 Postprocessing of UðsÞj must thus be performed, aimed at orthonormalization of the individual vectors of UðsÞj . This

moreover implies a selection of waves: when some of the vectors in UðsÞj are (approximately) linear combinations of the
other vectors, they should be removed from the set. The postprocessing step aims at selecting the minimum number of

waves that can represent the deformations at the substructure interface corresponding to the normal modes behavior of
the full FE model of the complete structure.

The second part of the wave calculation can thus be summarized as partitioning the modal matrix U to obtain the modal
displacement vectors UðsÞj at the interface per substructure, and performing an orthonormalization and selection step to
obtain waves with the characteristics required for WBS. Below, a practical procedure for this purpose is outlined.
Calculating the waves WðsÞ for a substructure ðsÞ requires performing the following five steps:
(1)
 Create an nðsÞj �m matrix UðsÞj that contains the interface modal displacements (see Eq. (10)), obtained from the modal
analysis of the nominal full FE model of the complete structure.
(2)
 Normalize a priori each column vector in UðsÞj (i.e. each modal displacement shape at the interface) to unity:

~U
ðsÞ

j ¼UðsÞj � diag
1

diagððUðsÞj Þ
T
�UðsÞj Þ

 !
(11)

Perform an orthonormalization of the interface modal displacement matrix ~U
ðsÞ

j . For this purpose the Singular Value
(3)

Decomposition (SVD) as given in Eq. (12) is used:

~U
ðsÞ

j ¼UnðsÞ
j
�nðsÞ

j

RnðsÞ
j
�mVT

m�m (12)

A visual representation of the SVD matrix equation is given in Fig. 4. The following characteristics are relevant for the
WBS procedure:
� The SVD can be used for the orthonormalization when mpnðsÞj . This is not a limitation for practical purposes. WBS is

intended to be used for cases with a large interface DOF size; in that case, there will typically be (much) more
interface DOFs nðsÞj than modes m in a frequency range of interest. (In case m4nðsÞj , one may wish to reconsider the
use of WBS, or one can choose for another orthonormalization algorithm, such as QR factorization [25].)
� The matrix Rm (the top m�m part of R) contains the m singular values si along the diagonal, in descending order

(i.e. sipsi�1 for all i¼ 2::m).
� The matrix U contains m orthonormal column vectors, which are the waves of interest.
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the nðsÞw singular values has been visualized with the gray areas in the matrices.
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(4)
 A selection of waves must then be made according to the matrix Rm. The recommended practice is to apply a relative
threshold T on the minimum value of the quantity si=s1 that is allowed. For this purpose, the following procedure is
applied to the singular value matrix Rm:
� Normalize all singular values si with the largest singular value s1.
� Subsequently apply a relative threshold T on the minimum value of the quantity si=s1 that is allowed.
� Discard the singular values for which the quantity si=s1 is smaller than the threshold T. That is: select all si values

for which

si � T � s1 (13)
This leads to the selection of the first nðsÞw singular values.

(5)
 The wave matrix WðsÞ is then obtained by selecting the first nðsÞw columns of the matrix U.
In the visualized SVD matrix Eq. (12) in Fig. 4, the selection procedure is shown by means of the gray areas. The selection
of nðsÞw singular values defines the gray square in the matrix R; this leads to the selection of the wave matrix WðsÞ as the first
nðsÞw columns of the matrix U, shown as the gray block area in matrix U.

The condition number k of the selected part of the matrix R (i.e. the gray square in Fig. 4) is given by s1=snðsÞw
. This

explains the recommended practice for wave selection in step 4: by applying a relative threshold T on the minimal quantity
of si=s1 that is allowed, one has direct control on the condition number of the selected part of R, as one equivalently
applies a threshold on the maximal condition number that is allowed. The larger the numerical condition number, the
more ill-conditioned the WBS assembly system. Alternative methods to perform the singular value selection (e.g. applying
an absolute threshold on the si values, or selecting a fixed number of waves) do not provide such direct control on the
condition number of the wave set.

Up to here, it has been explained how the wave matrices WðsÞ for a substructure ðsÞ can be calculated.
The wave calculation procedure has been implemented as follows, in a modus operandi that depends on the type of
connection:

Rigid connection: The waves WðaÞ are calculated on one side of the connection using the procedure described above.
These are then copied to the other side of the connection, so that WðaÞ

¼WðbÞ by default. The rigid connection can then be
made by applying Eq. (7).

Elastic connection: The waves WðaÞ and WðbÞ are calculated independently on each side of the connection.
That is, using the above procedure, a separate SVD is performed on each side of the connection. This yields
nðaÞw and nðbÞw waves, respectively, on each side (nðaÞw and nðbÞw may differ). The elastic connection can then be applied
with Eq. (8).

2.3.2. Reduction of components

WBS can be applied directly between FE components, but fast assembly-level predictions can only be obtained when at
least one of the components is reduced. In the WBS procedure, an efficient variant of the conventional reduction procedure
of MacNeal and Rubin [16,17] can be used to reduce the components. Fig. 5 shows a conventional substructure, with
interior DOFs xðsÞi and junction DOFs xðsÞj . The conventional reduction procedure of MacNeal and Rubin [16,17] consists of
calculating:
�
 the normal modes U of the component in free–free conditions;

�
 the residual attachment modes War for each junction DOF. These are static deformation vectors that enable to accurately

model the local flexibility at the interface. First, the residual stiffness matrix is calculated by subtracting the stiffness
matrix of the normal component modes U from the stiffness matrix in Eq. (2) (repeated below for clarity). This residual
stiffness matrix then replaces the stiffness matrix in Eq. (2) in the static calculation procedure to obtain the residual
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Fig. 5. Conventional substructure ðsÞ with interior DOFs xðsÞi and junction DOFs xðsÞj .

Fig. 6. WBS substructure ðsÞ for WBS, with interior DOFs xðsÞi and wave participation factors pðsÞ at the junction.
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attachment modes. A series of static analyses is performed, in which a unit force is applied at one junction DOF xj, with
a zero force at the remaining junction DOFs; this procedure is repeated for all junction DOFs.
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After this reduction calculation, the substructure can be reduced in terms of U and War according to
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(14)

Fig. 6 shows a substructure for WBS, with interior DOFs xðsÞi . The physical junction DOFs xðsÞj are no longer used to
represent the substructure interface: according to Eq. (5), the physical junction DOFs xðsÞj have been expressed in terms of
the waves WðsÞ, so that the wave participation factors pðsÞ are now used to represent the substructure interface. Provided
that nðsÞw onðsÞj , this substitution reduces the size of the interface representation. In the latter case, the WBS approach results
in a more efficient reduction procedure for substructures, which is elaborated below.

The equation of motion of a WBS substructure has been obtained in Section 2.2.1, by substituting Eq. (5) into Eq. (2). The
resulting equation of motion has been presented in Eq. (6), which is repeated below for clarity:

Mii MijW
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" #
€x i
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" #
xi

p

( )
¼

0

WTf j
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The WBS reduction procedure of the substructure system in Eq. (6) is now analogous to the conventional procedure of
MacNeal and Rubin [16,17]. The WBS reduction procedure is as follows (the mode sets suffix 0 indicates that they have been
obtained in a WBS reduction procedure):
�
 calculate the normal modes U0 of the system in Eq. (6) in free–free conditions (note: this means free–free in terms of the
interior DOFs xðsÞi and the wave participation factors pðsÞ);

�
 calculate the residual attachment modes War

0 for each wave participation factor pðsÞ. First, the residual
stiffness matrix is calculated by subtracting the stiffness matrix of the normal modes U0 from the stiffness matrix in
Eq. (6). This residual stiffness matrix then replaces the stiffness matrix in Eq. (6) in the static calculation
procedure to obtain the residual attachment modes. These static deformation shapes are obtained by successively
applying a unit force WTf j (denoted ‘‘wave load vector’’) on one of the wave participation factors p, with a zero force on
the remaining wave participation factors, and repeating this for all wave participation factors. The unit force f j is hence
weighted with the wave shape of interest WT for each participation factor p. Physically, this corresponds to applying a
unit load to the entire interface (distributed according to the wave shape of interest). Provided that poxb

j , one thus
obtains a smaller set of residual attachment modes that allow representing the local interface flexibility in assembly
conditions.
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After this WBS reduction calculation, the substructure can again be reduced in analogy with Eq. (14), in terms of the
free–free component modes U0 and the (smaller set of) residual attachment modes War

0 :
xi

xj

( )
¼ U0 War

0
� � q

r

� �
¼

Ui
0 War;i

0

Uj
0 War;j

0

" #
q

r
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As mentioned, the WBS substructure system equation in Eq. (6) is free–free in the sense that the interior DOFs xi and the
wave participation factors p are free in the substructure solution procedure. However, by substituting Eq. (5) in Eq. (2),
assembly-level dynamic boundary conditions have been introduced. The original junction DOFs xb

j have been expressed in
terms of the waves WðsÞ using Eq. (6). Recall that the waves WðsÞ have been obtained by orthonormalizing the interface
modal displacement matrix UðsÞj , which comes from a full FE modal analysis of the assembled nominal model. Physically,
this brings already some assembly-level behavior into the substructure behavior. The interface can only behave as linear
combination of the waves WðsÞ, weighted with the wave participation factors p. As a bonus (added to the more efficient
reduction procedure), this may also improve the quality of the substructure modal basis for assembly-level predictions.

3. Validation cases

In this section, WBS is applied to two cases, namely a two-plate assembly case and an industrial vehicle BIW case. To
assess the efficiency and accuracy of WBS, comparisons are made with the full FE analysis and the conventional MacNeal–
Rubin substructuring procedure. For all the calculations, MSC.Nastran [26] has been used as FE solver, MATLAB [27] has
been used for file pre- and postprocessing and intermediate calculations, and LMS Virtual.Lab [28] has been used to assess
the correlation between mode sets with the modal assurance criterion (MAC) [29].

3.1. Two-plate assembly

3.1.1. Case description

Fig. 7 shows a two-plate assembly made of steel (Young’s modulus E¼ 210 GPa, Poisson coefficient n¼ 0:3, mass density
r¼ 7850 kg=m3). In terms of geometry, Plate A and Plate B have the following dimensions:
�
 Plate A measures 0.5 m by 0.5 m in a wedge shape, with a thickness of 1 mm. It consists of 441 nodes and 400 quad elements.

�
 Plate B (434 nodes, 789 tria elements) measures 0.434 m by 0.3 m has a thickness of 0.85 mm and makes an angle of 313

with the Plate A plane.

�
 The interface is defined between 21 coincident nodes on each side, i.e. there are 126 junction DOFs. A rigid connection is

applied.

Plate A is larger and slightly thicker than Plate B. Free–free component modal analysis of Plate A resp. Plate B yields 20
resp. 16 normal modes (incl. 6 rigid body modes) up to 150 Hz. In this section, all FE calculations have been performed on
an Intel Pentium4 2813 computer system (1 GHz, 2 GB RAM) running a Windows 2000 operating system, using
MSC.Nastran version 2001.0.1.

3.1.2. Results

To verify WBS, an assembly is created of a full FE Plate A and a WBS-reduced modal model of Plate B, valid in the range
½0;100�Hz:
�
 A full FE modal analysis is performed in the range [0,100] Hz (CPU time 12.3 s); there are 22 modes (incl. 6 rigid body modes).

�
 An orthonormalization is performed using the SVD in Eq. (12), without setting an SVD threshold T as in Eq. (13), so that

all 22 waves are kept. These 22 wave DOFs are used for an efficient representation of the interface (instead of the 126
junction DOFs).
Fig. 7. Wave-based substructuring: two-plate assembly structure.
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the
Plate B is reduced using the procedure described in Section 2.3.2. The substructure solution consists of calculating the
substructure modes up to 150 Hz, and the residual attachment modes for the 22 wave participation factors.

�
 A rigid connection between the wave participation factors is created, yielding the WBS assembly structure.

Table 1 and Fig. 8 show the WBS process characteristics and the accuracy of WBS results. Among others, it can be seen
that the relative eigenfrequency difference is less than 7:7� 10�5, and the minimal MAC diagonal is 0.999973, when

compared to the full FE results.

Table 1 and Fig. 8 also show the results of the conventional procedure according to MacNeal and Rubin [16,17]. Again,
an assembly of Plate A (full FE) and Plate B (reduced) is made for the range ½0;100�Hz:
�
 Plate B is reduced according to MacNeal: a free–free modal analysis up to 150 Hz, asking residual attachment modes for
all 126 junction DOFs; thereof, only 102 are provided by MSC.Nastran. Due to approximation errors in the numerical
implementation, not all individual residual attachment modes can be distinguished, as their shapes are quite similar.
The solver then does not provide the entire basis of residual attachment modes, one for each physical junction DOF.

�
 The MacNeal assembly structure is created through rigid connections between the physical junction DOFs.

The results in Table 1 indicate that WBS offers a benefit for the reduction phase and the assembly phase:
�
 The reduction time and reduced modal model size for Plate B are smaller, as less residual attachment modes are
required.

�
 The assembly solution time is slightly smaller, since the WBS model has a smaller interface representation size between

the components, and involves coupling a smaller-sized reduced modal model for Plate B.

From a methodological perspective, it can be expected that WBS assembly prediction results are more accurate than the
results with MacNeal. The reason is that in WBS, assembly-level waves WðsÞ are used to describe the interface behavior on
the substructure level. This brings already some assembly-level behavior into the substructure behavior, which improves
le 1
o-plate assembly structure (see Fig. 7): Plate A full FE, Plate B in reduced modal model, using MacNeal or WBS, compared to full FE results.

MacNeal WBS

umber of component normal modes 16 16

umber of residual attachment modes 102 (out of 126) 22

PU time reduction 12.3 s 6.5 s

educed model size 1902 kb 400 kb

PU time assembly 6.6 s 6.4 s

el. eigfreq. diff: average 5:0� 10�5 1:2� 10�5

el. eigfreq. diff: maximum 3:9� 10�4 7:7� 10�5

AC diagonal: average 0.999983 0.999996

AC diagonal: minimum 0.999813 0.999973

. 8. Two-plate assembly structure (see Fig. 7). An assembly (full FE Plate A, and reduced Plate B) has been created, using (a) MacNeal and (b) WBS for

reduction. The MAC (w.r.t. full FE results) is shown for both cases.
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the quality of the modal reduction basis. However, the method comparison in Table 1 and Fig. 8 is not conclusive in terms
of accuracy, given the very small absolute prediction errors with both WBS and MacNeal, and given the very small
differences in the results for both methods.

3.2. Industrial vehicle model: B-pillar case

3.2.1. Case description

Fig. 9(a) shows an industrial vehicle BIW model (230.183 nodes, 223.323 elements) made of steel (Young’s modulus
E¼ 210 GPa, Poisson coefficient n¼ 0:3, mass density r¼ 7890 kg=m3). The BIW consists of two rigidly connected substructures:
�

Fig
com
The B-pillars (14.699 nodes and 13.697 elements), see Fig. 9(b).

�
 The body remainder (215.484 nodes and 209.328 elements), see Fig. 9(c).

�
 The connection consists of 298 junction nodes (i.e. 1788 junction DOFs).
In this section, WBS is applied in the B-pillar design scenario. The reduced modal model of interest has the B-pillars in FE
representation and a reduced modal model for the vehicle BIW remainder, as shown in Fig. 9(d). For this scenario, the
performance and prediction accuracy are compared to classical substructuring according to MacNeal and Rubin [16,17]. It
will be shown that WBS is much more efficient than conventional substructuring, and hence enables efficient B-pillar
design modification. All calculations have been performed on an Intel Xeon 5150 computer system (2.66 GHz, 8 GB RAM,
with 750 GB scratch space) running a Windows XP2003 SP2 x64 operating system, using MSC.Nastran version 2005.5.2.

3.2.2. Results

First, the procedure in Section 2.3 is applied to create a WBS assembly of the full FE B-pillars and a WBS-reduced modal
model of the body remainder (see Fig. 9(d)), which is valid in the range ½0;100�Hz:
�
 A full FE modal analysis is performed in the range ½0;100�Hz (CPU time 26 m 28 s); there are 35 modes (incl. 6 rigid body
modes).
. 9. Vehicle B-pillar case: industrial vehicle BIW FE model (a), which consists of two components: the B-pillars component (b) and the body remainder

ponent (c). The reduced modal model of interest (d) has the B-pillars in FE representation and a reduced modal model for the vehicle BIW remainder.
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An SVD orthonormalization with threshold T ¼ 1� 10�6 in Eq. (13) is performed; all 35 waves are kept. In [30], it has been
derived that an SVD threshold T ¼ 1� 10�6 is a suitable choice for engineering applications. After the waves selection, the
35 wave participation factors are used for an efficient interface representation (substituting 1788 junction DOFs).

�
 The BIW remainder is reduced using the procedure described in Section 2.3.2, by calculating the substructure modes up

to 150 Hz and residual attachment modes only for the 35 wave participation factors.

�
 A rigid WBS connection is defined to create the WBS assembly.

Subsequently, also the conventional substructuring approach of MacNeal and Rubin [16,17] has been used to create a
reduced assembly model as in Fig. 9(d). Again, an assembly of the B-pillars (full FE) and the BIW remainder (reduced) is
made for the range ½0;100�Hz:
�
 The BIW remainder is reduced with a conventional reduction, by calculating the substructure free–free natural modes
up to 150 Hz, and asking residual attachment modes for all 1788 junction DOFs, of which only 1128 have been provided
by the MSC.Nastran solver. Again, approximation errors in the numerical implementation have the result that it is not
possible to distinguish all individual residual attachment modes, as their shapes are quite similar. Because of this, the
solver does not provide the complete set of residual attachment modes, one for each physical junction DOF.

�
 The MacNeal assembly structure is created by defining rigid connections between the physical junction DOFs.

Table 2 shows the WBS process characteristics and the accuracy of results when compared to full FE: a relative
eigenfrequency difference o4:7� 10�5 for each mode, and a minimal MAC diagonal value of 0.999847. Table 2 also shows
the results of the conventional procedure [16,17].

When comparing the WBS and MacNeal results for the industrial BIW case, the tentative conclusions based on the two-
plate assembly (see Table 1) are strongly confirmed for this industrial case. In fact, the benefits of WBS in terms of accuracy
and efficiency are much more apparent:
�
 The reduction time for WBS (o1 h) is much smaller than for MacNeal (426 h); also the reduced model size with WBS
(less than 4 MB) is much smaller than with MacNeal (193 MB).

�
 The WBS assembly predictions are significantly faster (41.7 s, where MacNeal requires 181 s), and much more accurate.

With WBS, the relative eigenfrequency difference is three orders of magnitude smaller and the maximal MAC deviation
from 1 is only 1:53� 10�4. With MacNeal, Fig. 10 shows that the MAC Minimum can be as low as 0.23, so that the MAC
deviation from unity attains values up to 0.77.

For this case, the MacNeal reduction procedure is clearly inefficient, and does not result in a suitable component modal
basis for accurate assembly predictions. The relative eigenfrequency error up to þ5 percent (i.e. a stiffening effect) is due
to locking [18]: the incomplete set of 1128 residual attachment modes is insufficient to accurately represent the local
flexibility at the interface.

In summary, WBS offers a clear efficiency and accuracy benefit over the conventional MacNeal reduction procedure,
especially for cases with large interface size between substructures, as WBS allows modeling the local flexibility at the
interface with just a few enrichment vectors. It also brings some assembly-level behavior into the substructure behavior.
The combined effect results in a smaller and more accurate basis of substructure modes.

4. Robust modification predictions with WBS

In this section, it is shown that wave-based substructuring can be used for efficient modification analysis, which is key
towards vibro-acoustic optimization and robust design. The vehicle B-pillar case as shown in Fig. 9 is revisited. The effect of
B-pillar modifications on the global vehicle dynamics is assessed, based on the WBS-reduced assembly model in Fig. 9(d). It
le 2
icle B-pillar case (see Fig. 9): B-pillars are kept in FE representation, and a reduced modal model is created for the remainder of the vehicle BIW, using

cNeal or WBS, compared to full FE results.

MacNeal WBS

umber of component normal modes 85 70

umber of residual attachment modes 1128 (out of 1788) 35

PU time reduction 26 h 40 min 29 s 54 min 13 s

educed model size 193 MB 3.94 MB

PU time assembly 181 s 41.7 s

el. eigfreq. diff: average 1:9� 10�2 1:3� 10�5

el. eigfreq. diff: maximum 4:9� 10�2 4:7� 10�5

AC diagonal: average 0.87810 0.999986

AC diagonal: minimum 0.22906 0.999847
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Fig. 11. Vehicle B-pillar case: modification of spot weld layout from the nominal design (a) to a modified design with a sparse spot weld density (b).

Fig. 12. Vehicle B-pillar spot weld layout modification: MAC to compare the nominal modes (with B-pillars as in Fig. 11(a)) with the modes obtained

when the B-pillars are modified (Fig. 11(b)).

Fig. 10. Vehicle B-pillar case (see Fig. 9): an assembly (B-pillars in FE representation, and a reduced modal model for the remainder of the vehicle BIW)

has been created, using (a) MacNeal or (b) WBS for the reduction (see Table 2). The MAC (w.r.t. full FE results) is shown in side view for both cases.
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has been shown in Section 3.2 that the use of 35 waves instead of 1788 physical DOFs improves the efficiency of the
reduction procedure and the accuracy of assembly predictions when compared to a conventional MacNeal–Rubin
reduction. The substructuring in Fig. 9(d) is aimed at efficient design modification of the B-pillar and its joint connections
to the body. Two cases are presented: spot weld layout modification, and local reinforcement of the B-pillar and the
B-pillar to rocker joint.

4.1. Spot weld layout modification

The nominal B-pillars have been spot welded along four line connections with an average spot weld distance of 55 mm,
so that 17 spot welds are created along each line, see Fig. 11(a). In the modified design, the distance is increased to 150 mm,
so that the number of spot welds along each line is drastically reduced to only 6 or 7 per connection line, see Fig. 11(b).
Fig. 13. Vehicle B-pillar spot weld layout modification: MAC to compare the modes obtained with the modified B-pillars (Fig. 11(b)) in the WBS reduced

assembly case with those of a full FE validation analysis.

Fig. 14. Vehicle B-pillar spot weld layout modification: FRF from engine mount ðþZÞ to seat rail ðþZÞ ð½02100�HzÞ. The nominal model (17 spot welds per

line) yields the dotted curve. For the modified models (6 or 7 spot welds per line), the WBS-reduced result (solid) is compared with the full FE validation

result (dashed).
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For this modification, Fig. 12 compares the full FE analysis results for the nominal model and the model with the
B-pillars modified as in Fig. 11(b), i.e. with 6 or 7 spot welds instead of 17 spot welds along each line. The dynamics have
clearly changed as a result of the modification.

To assess the quality of the modification prediction with WBS, a comparison is made between the modes of the BIW
with modified B-pillars, see Fig. 11(b), obtained from a full FE validation analysis of the modified model, and from a
WBS-reduced assembly analysis. For all modes up to 100 Hz, the relative eigenfrequency difference is less than 0.3 percent,
and the MAC diagonal value is larger than 0.98 (see Fig. 13).

Finally, Fig. 14 shows the results of a structural FRF calculation. More specifically, the displacement over force FRF is
calculated in the range up to 100 Hz, with input force at the engine mount (þz) and output at the driver seat rail (þz).
The nominal FRF, shown as a dotted line, is compared with the FRFs obtained from the modified models (with 6 or 7 spot
welds along each line). The modification prediction with the WBS-reduced assembly model (solid) is compared with a full
FE validation analysis (dashed). It can be seen that the effects of the modification are noticeable (the nominal curve clearly
differs from the modified curves), and that the WBS-reduced modification prediction is very accurate when compared to
the full FE validation prediction of the modification, both in terms of amplitude and phase.

4.2. Local reinforcement of the B-pillar

In this section, local reinforcements are applied to the B-pillar, which are efficiently evaluated using the WBS-reduced
modal model of Section 3.2.
�
 At each side, a flange with 2 mm thickness has been applied at the top of the B-pillar (see Fig. 15, top), located between
the central panel and the outer shell, and connected with two additional spot welds.

�
 At each side, two reinforcement panels have been added inside the B-pillar to rocker joint (see Fig. 15, bottom), with a

shell thickness of 1.5 mm. They are connected inside the rocker joint with seam welds.

Such local modifications are often applied in a vehicle (re)design context, for instance when creating variants for different
markets (e.g. in case of different body stiffness requirements or side impact regulations in these markets). For this
modification, Fig. 16 compares the full FE analysis results for the nominal model and the modified model in which the local
reinforcements shown in Fig. 15 have been added. The dynamics have clearly changed as a result of the modification.

To assess the quality of the modification prediction with WBS, a comparison is made between the modes of the BIW
with modified B-pillars (as in Fig. 15), obtained from a full FE validation analysis of the modified model, and from a WBS-
reduced assembly analysis. The relative eigenfrequency difference is less than 1.0 percent for all modes up to 100 Hz, and
the MAC diagonal value is larger than 0.97 for all modes up to 100 Hz, see also Fig. 17.

The cases presented in this section show that WBS can be applied for efficient design modification, which is key in view
of optimization and robust design. In this section, efficient design modification of the B-pillar and its joint connections to
the vehicle body have been considered. The WBS-reduced modal model has been used (see Fig. 9(d)), with the B-pillars in
FE representation and a reduced modal model for the vehicle BIW remainder. The B-pillars have a large interface size
Fig. 15. Vehicle B-pillar case: local reinforcements are added to the B-pillar and the B-pillar to rocker joint.
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Fig. 16. Vehicle B-pillar local reinforcement: MAC to compare the modes of the nominal model with the modes obtained when local reinforcements are

added (see Fig. 15).

Fig. 17. Vehicle B-pillar local reinforcement: MAC to compare the modes for the modified structure using WBS and a full FE modification validation analysis.

S. Donders et al. / Journal of Sound and Vibration 329 (2010) 1062–10801078
(in terms of physical DOFs) to the remainder of the BIW, so that classical substructuring according to MacNeal and Rubin is
inefficient and even inaccurate. WBS, however, allows to make the required partitioning for efficient design modification of
the B-pillar and its joints. Two structural modification scenarios have been shown: the modification of spot weld layout
and the placement of local reinforcements. The modifications have a substantial effect on the global body modes, which is
accurately predicted using the WBS-reduced modal model.
5. Conclusions

A wave-based substructuring (WBS) approach has been presented, which allows reducing the interface representation
between substructures in an assembled system, by expressing the degrees of freedom at the interface in terms of a limited
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set of basis functions (‘‘waves’’). Especially for structures with a large interface representation size in terms of physical
DOFs, this provides a number of benefits as compared to the conventional procedure of MacNeal and Rubin:
�
 WBS improves the efficiency of the reduction procedure, since a lower number of residual attachment modes needs to
be calculated;

�
 WBS may improve the accuracy of the reduction procedure. On the one hand, a conventional reduction procedure may

result in inaccurate results: due to approximation errors in the numerical implementation, the solver may not be able to
distinguish between all individual residual attachment modes, hence the calculation may only yield a subset. On the
other hand, WBS uses globally defined waves in the reduction procedure of components to describe the interface
behavior; this effectively constrains the interface to global behavior on component level, which results in a more
accurate component modal basis for assembly-level predictions.

�
 WBS improves the efficiency of modification predictions using the WBS-reduced modal model. The interface

representation size is reduced, and also the size of the reduced modal models of components is reduced (since the
component reduction calculation involves the calculation of a lower number of residual attachment modes).

�
 WBS improves the prediction accuracy with the reduced assembly model (thanks to a more accurate component

reduction procedure).

The efficiency and accuracy of WBS (as compared to the conventional MacNeal–Rubin substructuring procedure) have
been demonstrated on the basis of two application cases, namely a two-plate assembly case and an industrial vehicle BIW
case aimed at efficient re-design of the B-pillars. On the basis of the latter case, it has been shown that WBS can be used for
efficient design modifications in view of reaching structural or vibro-acoustic performance targets. Especially in case of
large interface size between the substructures, a common situation in vehicle industry (B-pillars, cowl top, roof or floor,
etc.), WBS offers a clear benefit for vehicle design modifications, by drastically improving the speed of component
reduction processes and by improving the efficiency and accuracy of design iteration predictions when compared to
conventional substructuring approaches.
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